General Pappus

Let $\gamma \subset \mathbb{R}^{2}$ be a simple closed curve with length L. Consider the solid S which has sections perpendicular to γ and to the plane that are the same figure of area A, with the point of intersection with γ always a fixed point on the planar section. We will calculate the volume of S.

Let $(u(s), v(s), 0)$ be an arclength parametrization of γ, traced counterclockwise. The transversal section can be parametrized by $r, t \in D \subset \mathbb{R}^{2}$, with $r=t=0$ representing the coordinates of the point of intersection with γ. With this, the region S is parametrized by

$$
P=(x, y, z)=(u(s), v(s), 0)+r \hat{n}(s)+t(0,0,1), s \in[0, L], r, t \in R,
$$

where $\hat{n}(s)=\left(v^{\prime}(s),-u^{\prime}(s), 0\right)$ is the outward pointing unit normal to the curve. A simple calculation shows that the jacobian $\partial(x, y, z) / \partial(s, r, t)$ is given by

$$
1+r k(s),
$$

where $k(s)$ is the signed curvature γ with respect to $-\hat{n}$. Indeed

$$
\begin{gathered}
P_{s}=\hat{t}+r \hat{n}_{s}=\hat{t}+r k \hat{t}=(1+k r) \hat{t}, \\
P_{r}=\hat{n}, \\
P_{t}=(0,0,1) .
\end{gathered}
$$

After integrating the jacobian we obtain

$$
V=L A+2 \pi \iint_{R} r d r d t
$$

When the r component of the center of gravity of R vanishes, we obtain a generalization of the theorem of Pappus.

